! Model: recursive model of VIQ, GPA, and CPL
! with trivariate Cholesky decomposition of A, C, D and E
! Groups: all (MZ, DZ, FS, HS, CO, NR)
! Data: single entry covariances
! Transfo: standardized within categories of RASEX_1$
! Submodels: BACE and all submodels
! Restrict ACE to make B identified
! Formula for K (standardized coefficients) corrected
! Formula for O (standardized B) corrected
! Mating: randomg (k=.5)
! Bound all in [0 10]
#ngroups 8
#define nvar 3 ! number of variables
#define twonvar 6 ! two times nvar
Group 1 - Model parameters
Calculation
Begin matrices;
B sdiag nvar nvar free ! phenotypic regression coefficients
X lower nvar nvar free ! genetic structure
Y lower nvar nvar free ! common environmental structure
Z lower nvar nvar free ! specific environmental structure
V lower nvar nvar ! dominance structure
I iden nvar nvar
H full 1 1
Q full 1 1
T full 1 1
End matrices;
Matrix H .5
Matrix Q .25
Matrix T .125
Start .5 all
Bound 0 10 B 2 1 B 3 1 B 3 2
Begin algebra;
A = X*X' ;
C = Y*Y' ;
D = V*V' ;
E = Z*Z' ;
W = (I - B)~ ;
End algebra;
Options NO_Output
End
Group 2 - MZ twins
Data NInputvars=twonvar NObs=170
Labels VIQ_1 GPA_1 CPL_1 VIQ_2 GPA_2 CPL_2
CMatrix
1.0598
0.2741 0.9223
0.2975 0.3609 0.9899
0.8047 0.3193 0.2565 1.1652
0.1827 0.6173 0.3118 0.3239 0.9489
0.3339 0.3472 0.6587 0.4035 0.3823 0.9976
Matrices = Group 1
Covariance
W*(A+C+D+E)*W' | W*(A+C+D)*W'_
W*(A+C+D)*W' | W*(A+C+D+E)*W' ;
Options NO_Output
End
Group 3 - DZ twins
Data NInputvars=twonvar NObs=290
Labels VIQ_1 GPA_1 CPL_1 VIQ_2 GPA_2 CPL_2
CMatrix
0.8260
0.2022 0.8680
0.1474 0.2404 0.8911
0.3204 0.1219 0.1269 0.9832
0.0408 0.2943 0.0942 0.2352 0.9081
0.0270 0.0489 0.2120 0.1146 0.2369 0.7247
Matrices = Group 1
Covariance
W*(A+C+D+E)*W' | W*(H@A+Q@D+C)*W'_
W*(H@A+Q@D+C)*W' | W*(A+C+D+E)*W' ;
! By using Kronecker product H@A each element of A is multiplied by .5
Options NO_Output
End
Group 4 - FS Full siblings
Data NInputvars=twonvar NObs=702
Labels VIQ_1 GPA_1 CPL_1 VIQ_2 GPA_2 CPL_2
CMatrix
1.0769
0.2980 0.9499
0.2181 0.3671 0.9807
0.4152 0.1797 0.1422 0.9484
0.1605 0.3326 0.2299 0.2441 0.8966
0.1346 0.2156 0.3218 0.2402 0.3766 0.9580
Matrices = Group 1
Covariance
W*(A+C+D+E)*W' | W*(H@A+Q@D+C)*W'_
W*(H@A+Q@D+C)*W' | W*(A+C+D+E)*W' ;
Options NO_Output
End
Group 5 - HS Half siblings
Data NInputvars=twonvar NObs=242
Labels VIQ_1 GPA_1 CPL_1 VIQ_2 GPA_2 CPL_2
CMatrix
0.9014
0.1846 1.1316
0.2399 0.4942 1.1443
0.2967 0.0984 0.1197 1.0185
-0.1058 0.3188 0.1181 0.1388 1.1652
0.1773 0.0880 0.2229 0.2092 0.3244 1.0395
Matrices = Group 1
Covariance
W*(A+C+D+E)*W' | W*(Q@A+C)*W'_
W*(Q@A+C)*W' | W*(A+C+D+E)*W' ;
Options NO_Output
End
Group 6 - CO Cousins
Data NInputvars=twonvar NObs=105
Labels VIQ_1 GPA_1 CPL_1 VIQ_2 GPA_2 CPL_2
CMatrix
0.9116
0.1656 1.0338
0.0519 0.1879 0.8081
0.2807 0.1073 0.0055 0.6902
0.0779 0.0949 -0.0107 0.1433 0.8142
0.2368 0.2193 0.1130 0.2344 0.2101 1.0828
Matrices = Group 1
Covariance
W*(A+C+D+E)*W' | W*(T@A+C)*W'_
W*(T@A+C)*W' | W*(A+C+D+E)*W' ;
Options NO_Output
End
Group 7 - NR Unrelated siblings
Data NInputvars=twonvar NObs=174
Labels VIQ_1 GPA_1 CPL_1 VIQ_2 GPA_2 CPL_2
CMatrix
0.8979
0.2526 0.8364
0.1492 0.2947 0.7491
0.0553 -0.0561 0.0792 0.8613
-0.0878 0.0676 0.1349 0.2162 0.8480
0.0129 -0.0070 0.1709 0.1496 0.1724 1.0792
Matrices = Group 1
Covariance
W*(A+C+D+E)*W' | W*(C)*W'_
W*(C)*W' | W*(A+C+D+E)*W' ;
Options NO_Output
End
Group 8 - Calculate standardized solution, etc.
Calculation
Matrices = Group 1
Begin algebra;
! Next calculate A, C, E as proportions of total predicted
! covariance matrix S = A+C+E
S = W*(A+C+D+E)*W' ;
K = A%S | C%S | D%S | E%S ;
! Next calculate genetic, shared environmental,
! and unshared environmental correlations
! L = \stnd(A) | \stnd(C) | \stdn[D] | \stnd(E) ;
! Next calculate standardized path coefficients
! For paths from latent variables just divide by predicted SD of head
M = (\sqrt(S.I))~*X | (\sqrt(S.I))~*Y | (\sqrt(S.I))~*V | (\sqrt(S.I))~*Z ;
! For standardized coefficients for B also multiply by predicted SD of tail
O = (\sqrt(S.I))~*B*(\sqrt(S.I)) ;
! Next calculate squared standardized paths = components
! of heritabilities, environmentalities, and specificities
N = M.M ;
End algebra;
! Labels Columns K A1 A2 A3 C1 C2 C3 E1 E2 E3
! Labels Columns L A1 A2 A3 C1 C2 C3 E1 E2 E3
! Labels Columns M A1 A2 A3 C1 C2 C3 E1 E2 E3
! Labels Columns N A1 A2 A3 C1 C2 C3 E1 E2 E3
! Labels Rows K VIQ GPA CPL
! Labels Rows L VIQ GPA CPL
! Labels Rows M VIQ GPA CPL
! Labels Rows N VIQ GPA CPL
! Intervals K 8 1 1 K 8 2 2 K 8 3 3
! Intervals K 8 1 4 K 8 2 5 K 8 3 6
! Intervals K 8 1 7 K 8 2 8 K 8 3 9
! Intervals O 8 2 1 O 8 3 1 O 8 3 2
! Options THard=10
Options NDecimals=4
Options RSiduals Multiple Issat
End
Save mx0204c.mxs
! Drop A, C2, C3, off diag E -> BC1Ed
! Maximal identifiable model with B paths
get mx0204c.mxs
Drop 4 to 9
Drop 12 14 15
Drop 17 19 20
Options Multiple Issat
End
! Drop A, B, C2, C3, off diag E -> C1Ed
! To check if B identified
get mx0204c.mxs
Drop 1 2 3
Drop 4 to 9
Drop 12 14 15
Drop 17 19 20
Options Multiple
End
! Drop B -> ACE
get mx0204c.mxs
Drop 1 2 3
Options Multiple Issat
End
! Drop B & C -> AE
get mx0204c.mxs
Drop 1 2 3
Drop 10 to 15
Options Multiple
End
! Drop B & A -> CE
get mx0204c.mxs
Drop 1 2 3
Drop 4 to 9
Options Multiple
End
! Drop B & A2 A3 -> A1CE
get mx0204c.mxs
Drop 1 2 3
Drop 6 8 9
Options Multiple
End
! Drop B & off diag A -> AdCE
get mx0204c.mxs
Drop 1 2 3
Drop 5 7 8
Options Multiple
End
! Drop B & off diag C -> ACdE
get mx0204c.mxs
Drop 1 2 3
Drop 11 13 14
Options Multiple
End
! Drop B & C3 -> AC12E
get mx0204c.mxs
Drop 1 2 3
Drop 15
Options Multiple
End
! Drop B & C2 C3 -> AC1E
get mx0204c.mxs
Drop 1 2 3
Drop 12 14 15
Options Multiple
End
! Drop B & C2 C3 & off diag E -> AC1Ed
! Test against ACE
get mx0204c.mxs
Drop 1 2 3
Drop 12 14 15
Drop 17 19 20
Options Multiple
End
! Drop B & C2 C3 -> AC1E
get mx0204c.mxs
Drop 1 2 3
Drop 12 14 15
! Define this model as saturated
Options Multiple Issat
End
! Drop B & C2 C3 & off diag E -> AC1Ed
! Test against AC1E
get mx0204c.mxs
Drop 1 2 3
Drop 12 14 15
Drop 17 19 20
Options Multiple
End